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Abstract

Providing direct and indirect contributions of more than $18 billion to the nation’s gross output in

2004, the computer and video gaming industry is one of the fastest-growing sectors of entertainment.

A large part of that market includes team-oriented online games. In fact, according a recent study

online gaming is the most popular online entertainment activity in the United States. Players in these

games often have a high-level of interest in statistics that help them assess their ability compared to other

players. However few models exist that estimate individual player ratings from team competitions. There

are models that can be used at the team-level, however the dynamic nature of the teams in the more

popular public-style play of these games makes it necessary to build team strengths from player abilities.

The following presents a model that describe team abilities in terms of how well the individual players on

the teams contribute to their team’s winning. In addition, the model presented includes parameters that

estimate other characteristics of the games themselves. The model is posed in a hierarchical Bayesian

framework. In addition to giving players a better estimate of their skill, this model can also be used to

improve current gameplay, and create more enjoyable games in the future. Companies and servers that

apply well-developed statistics for assessing their players’ abilities are more likely to attract and retain

players, leading to greater success in the industry. The model is fit using both Markov-Chain Monte

Carlo (MCMC) and a recursive updating method. As measured on 4,675 matches, the recursive method

results in an accuracy of 73% when used to predict the outcomes of the matches used to estimate player

ratings. In addition, it is shown that this method is fast enough to be used in real-time whereas MCMC

is not.
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1 Introduction

According to one marketing research firm, the computer gaming industry is the fastest-growing sector of

entertainment (DFC Intelligence, 2006). Robert Crandall, a senior fellow with the Brookings Institution,

and Gregory Sidak, visiting professor of Law at Georgetown University stated in a recent study that “The

entertainment software business provided direct and indirect contributions of more than $18 billion to the

nation’s gross output in 2004” (Crandall and Sidakk, 2006). In fact, “video games represent an $11 billion

U.S. entertainment industry, larger than Hollywood box office sales” (DFC Intelligence, 2006). A large

portion of this revenue comes from the online gaming sector, which is projected to bring in $2.5 billion

in 2006 (Jarret, 2003). 44% of all video and computer gaming players say they play online in addition

to offline games (The Entertainment Software Association, 2006). According to Parks Associates (2007),

online gaming is the most popular online entertainment activity in the U.S., surpassing both video sharing

and social networking. One of the more popular genres in online gaming involves team competitions. This

includes games based on popular sports, but more popular are team-based first-person shooter games which

include blockbuster titles like Halo 2 and Half-Life 2. Millions of “gamers” can be found playing these games

every day.

Most online players prefer having a method of tracking their progress in the games they play, and

comparing themselves to other players. If a player feels like he or she can achieve some goal with a given

statistic, they are more likely to continue playing. Games and servers that provide better developed statistical

methods for comparing a player’s skill are more likely to retain a larger player base, and hence be more

profitable. Therefore, having good ways of rating players benefits the players, the companies producing the

games, and the companies running servers for the games. In addition, if aspects of the game besides the

players can be judged statistically, the developers can use this information to improve the quality of newer

games. For example, in this paper we show how the fairness of the “field” two teams play on can be analyzed.

This can be used to improve the fairness of gameplay.

Most players of online team games play on “public servers”. By public we mean that players are free to

join, leave, and switch teams as often as they like. By server, we refer to the software that maintains the

state for a given game and match and determines when a match is over and who the victors are. Public

matches can be highly dynamic in terms of which players are on either team and therefore the ratings of the

teams can not be estimated at the group level, but need to be built from individual ratings. Unfortunately,

for team-based games, there are few systems in place that estimate individual player ratings from group

competitions. The following presents an extension of the model proposed by Bradley and Terry (1952) for
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paired-comparisons that estimates individual player ratings based on the winners of team competitions.

There are several types of statistics that can be tracked in these team competitive online games, many of

which are interesting at the individual level, but are not consistent indicators of a player’s team contribution.

The goal of the model in this paper is to estimate how well a player contributes to his or her team winning

the match. Therefore, the ratings are estimated only in terms of the wins a player achieves while playing

on their given teams. It should be noted that the ratings here are not necessarily strong indicators of how

these players would play one-on-one, but rather in team settings.

There are several reasons why ranking and rating players in public, online, team-based competitions can

lead to an increase in the number of players that play and continue to play a given game or play on a given

server:

• It gives players a measure of their performance and hence motivation to improve themselves. Our

experience with running several online servers has shown that players tend to play more often on

servers that provide a method of assessing their performance. The servers providing more statistical

information are consistently full whereas the others are often near empty.

• It allows server administrators to judge the fairness of gameplay on their servers. Servers known for

fair gameplay always attract more players than other servers. This is because the newer players know

they have just as much a chance of winning on either team, and older players know the challenge level

will remain consistent.

• It can aid players in choosing servers that better fit their abilities. If the difficulty of a server can also

be judged, then players can choose the servers that best fit their abilities. The following paper provides

a model for comparing the difficulty level of a given server to other servers.

In the end, the games and servers that provide better statistical measures in addition to more challenging

and fair gameplay will attract more players.

The game chosen for this paper is called Wolfenstein: Enemy Territory, also known as ET. It is one of the

most popular team-based online games played with several hundred thousand unique players playing every

day. Its popularity is partly due to the fact that it was made free by its publisher, Activision. In Enemy

Territory, each match consists of an Axis side and an Allies side competing on a World War II historically

inspired map. Each team has several objectives they need to complete within a certain time limit in order

to win. Usually, one team’s objective is to accomplish a given goal, while the other team’s objective is to

prevent them from accomplishing this goal during the time limit. This often unbalanced play-style, combined
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with the common coming and going of players on a public server, creates matches that require rich models

in order to predict. They can be compared to a soccer game where either team can have as many players as

they like so long as the combined number of players on the field is less than some maximum. To complicate

matters further, the players are free to switch between teams at will. Furthermore, the soccer field does not

have to be symmetrical: the field can be on an incline such that the ball naturally rolls towards one team’s

goal, and it can also include obstacles on one end that are not on the other. The pool of possible players

also does not have a limit, ranging as high as 1,000, and the players are free to leave and join a match at any

time. There are no other published models designed to handle this complex of a competition. The following

presents a model to estimate individual ratings from team-play and account for both the imbalance in the

play-style, and the dynamic nature of the teams.

With the model presented here, we are able to answer several questions, including, “Who are the best

players on this server?”, “Which maps are the most difficult for the Axis side?”, and “Which server is easier

to play on for the average player?”, in addition to questions like “How likely are the Allies to win the current

match on this server?”

While the model in this paper is first fit using MCMC, we also need a method that can estimate the

ratings of up to millions of players on thousands of servers in real-time in order to give up-to-date statistics

to the players. It takes longer to fit the model with MCMC than the length of a single match in most

online games, and therefore MCMC would be inappropriate in a real-time setting. This paper presents a

recursive updating method that gives a group generalization of that proposed by Glickman (1999) for quickly

estimating the ratings of large amounts of players across large amounts of servers. In order to be practical,

any model for ranking individual players from team competitions needs to be less demanding in both its

memory requirements and speed. We show that the recursive method we propose is fast enough to fit the

data in real-time, whereas MCMC is not.

This paper proceeds as follows. Section 1.1 gives related work, section 2 describes the data analyzed,

the model is presented in section 3, section 4 explains the how the model parameters are estimated using

MCMC, section 5 presents the less time intensive recursive approximation for fitting the model along with

results and comparisons to MCMC, potential applications and uses for real-time estimation of rating players

are shown in section 6, and section 7 gives conclusions and directions for future work.

4



1.1 Related Work

Statistically motivated rating systems are not new. One of the earliest examples is that of Elo (1978) for chess

ratings. He used the equivalent of a Thurstone Case V model which assumed chess competitors had a rating

score that followed a normal distribution. This model also assumed a normal distribution on the difference

in player ratings. More recent versions of Elo’s chess rating system have adopted a logistic distribution

instead of a normal distribution because it has been shown that “weaker players have significantly greater

winning chances” (Wikipedia, 2006). The logistic distribution version of Elo’s model is equivalent to the

model proposed by Bradley and Terry (1952) for paired-comparisons.

The basic model used in this paper is an extension of the commonly used Bradley-Terry model. In this

model, two opponents have ability parameters λ1 and λ2, and the probability of the first opponent winning is

λ1/(λ1+λ2). Several reviews on uses of and extensions to Bradley-Terry models can be found in the literature

(Bradley and Terry, 1952; Davidson and Farquhar, 1976; David, 1988; Hunter, 2004). One common extension

proposed by Agresti (1988) is to add a parameter to the model for home field advantage. The following uses

a similar approach, adding a parameter to model the advantage or disadvantage of playing on the Allies

side. In addition, Glickman (1999, 2001) recently extended the Bradley-Terry chess rating model to take

into account uncertainty about a player’s rating based on the amount of time that has passed since a player

has competed.

What makes this work unique is that it presents a new model for estimating individual ratings from team

competitions. Few other models have been presented for this situation. One notable model is that of Huang

et al. (2006b). They use Bradley and Terry’s original formulation of the model, but obtain each team’s λ

by summing the ratings of its players: λ1 =
∑

i∈1 pi, where pi is the rating of player i. This model fit well

in their application which never had uneven amounts of individuals per group. It results in a linear increase

in team rating when there are more players on one team than another. Experience has shown us, however,

that having more players on one team does not result in a linear, but rather exponential increase in the

team’s perceived ability to win for our application. Another similarity between our model and that of Huang

et al. (2006b) is that we both present a method for weighting individuals by how much they are expected

to contribute to their respective teams. Huang et al. (2006b) suggest the weighting be predetermined using

expert knowledge about the data, whereas we use a simple exposure model that uses the percent time a

player plays on a given team for a given match as that player’s “weight” for that match. In a more recent

paper, Huang et al. (2006a), use the same basic model as that presented here, however it is posed and fit in

a maximum likelihood instead of Bayesian framework.
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Another recently proposed model that estimates individual ratings from team competitions is that of

Herbrich et al. (2007). Their ratings system is similar to the Thurstone Case V model given by Elo (1978)

except instead of comparing two individuals, it compares two groups by summing the ratings of the indi-

viduals. Since the likelihood they use is a normal, unlike the model given by Huang et al. (2006b), team

ratings increase exponentially when one team has more players than another. The main difference in the

model presented here is that we assume a logistic instead of normal distribution on the difference in team

strengths. This results in our model being an extension of the Bradley-Terry model, whereas theirs is an

extension of the Thurstone Case V model. We made this decision because we felt weaker teams were more

likely to win than the normal distribution would predict. In addition, the model presented here infers other

game characteristics besides player skills that are also beneficial to both match-making and game design.

The model used in this paper is first fit using MCMC, but MCMC is impractical for online gaming because

it takes longer to fit the model than it does to play a match. Therefore, the estimates after a new match

would already be inaccurate by the time they were available. A recursive method that generalizes the work

in Glickman (1999) to individuals in groups is given for estimating the parameters of the model efficiently

enough for real-time use. Other methods for quickly fitting Bradley-Terry models have been proposed by

Elo (1978); Hunter (2004); Glickman (1995, 1999, 2001). The method here is similar to that proposed by

Elo as given in Elo (1978) and those suggested by Glickman (1999, 2001), however these methods do not

naturally extend to estimate individual ratings from groups. Generalizing the method in Glickman (1999)

retains the ability to model the uncertainty in a player’s rating unlike that in (Elo, 1978). This method is

detailed in section 5.3.

In addition to providing ratings for individual players from group competitions, the model proposed by

Herbrich et al. (2007) also provides an efficient method for fitting the ratings in real-time. Their method uses

a form of normal density filtering which minimizes the Kullback-Liebler divergence between the estimated

and actual distributions. The main difference is the method described here fits the mean and variance of a

normal distribution at the mode, whereas the method in Herbrich et al. (2007) fits it at the mean. Section

4 shows that the posterior of the player ratings follows a normal distribution, and therefore the quality of

estimating at either the mean or mode should be similar.
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2 Data

We obtained data by parsing the log files from three Enemy Territory servers yielding 4,675 matches. For

each match, the log files list which server the match was played on, which map was played, which side

won—Axis or Allies—the length of the match, which players participated, and how long each player spent

on both teams. Here is an example of a part of log file entry:

Map: fueldump Winner: AXIS Time: 1800000

Name: Player1 GUID DFBB5: Time Axis: 0 Time Allies: 1450200

Name: Player2 GUID EF071: Time Axis: 1549800 Time Allies: 0

The first line, or “Map” line gives which map or field the match was played on, the side that won the match,

and how long the match lasted in milliseconds. In this match, the Axis side won and the match lasted

1,800,000 milliseconds, or 30 minutes. The remaining “Player” lines give information about each player.

First, a name is given, which in this case we have anonymized. These are usually nick names the players

choose and often change. In order to track players despite changing names, the next field is used. A player’s

GUID or Globally Unique IDentifier is a 32-digit hexadecimal field that is unique across all servers for Enemy

Territory and assigned by a central server for every player everywhere in the world. The GUIDs presented

here have been shortened to 5 digits for both privacy and brevity. The player records are stored based on

this instead of their names which can change. After the GUID, the last two fields give the amount of time

each player spent on the Axis or Allies team in milliseconds. For example, Player1, the first given player,

spent 1,450,200 milliseconds, or 24 of the matches’ 30 minutes on the Allies side, which lost. Player2, the

second player from the top, spent 1,549,800 milliseconds, or almost 26 of the matches’ 30 minutes on the

winning Axis side. Notice that neither player spent the entire 30 minutes of the match in the game. In

addition, here is an example of a player in a different match who spent time on both sides:

Name: Player3 GUID 6C875: Time Axis: 552600 Time Allies: 1336200

Here, Player3 spends 9 minutes on the Axis team, and then 22 minutes on Allies team. It is not uncommon

to see players that do not play the entire match on the same team and players who do not participate for the

entire match in online matches like those in Enemy Territory. This happens for several reasons, including

players joining the server late in a match, and players switching teams to play with closer acquaintances.

Therefore, we present a method for handling this dynamic behavior in section 3.
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3 Models

The following shows how we used the given data to estimate player ratings. We present a model for individual

player ratings in section 3.1, an extension for handling map-side effects in 3.2, and another extension for

server difficulty in section 3.3. Section 3.4 gives the likelihood for predicting whether a given team will win

a match given the data above.

3.1 Basic Model

Although the outcome of each competition is measured at the team- or side-level, the fundamental unit of

the rating system needs to be built on the abilities of the individual players themselves. The likelihood given

in section 3.4 determines a team’s rating from the players. Therefore, we need a model for the individual

player ratings. We let θi represent player i’s ability to help their side win a match. There are no existing

standards for rating players in these games and so for simplicity we chose a model that places player ratings

symmetrically around 0. The better players will have positive player ratings, and the worse players negative

ratings. This is in contrast to the ratings in, for example, chess, that have values ranging closer to 1500–2500.

Our model for player ability is:

θi ∼ N(µ, σ2
θ). (1)

σ2
θ is given a prior distribution and µ = 0 without loss of generality. This model could be used without

modification with the likelihood in 3.4, however that would make the naive assumption that a player’s

probability of winning is not affected by the difficulty of the side that player plays on for a given map.

3.2 Accounting for Map-Side Effects

Because maps in Enemy Territory and most other games of this nature are so varied, it is convenient to

describe the details of a given match in terms of the combination of map and side that each player played on.

Throughout this paper, we refer to a team or a player’s “map-side” combination, meaning the map the match

took place on, e.g. the map “venice”, and the side the player played on—Axis or Allies. Without accounting

for a “map-side” effect, the model given above would be naive considering most maps were designed such

that one side has a major advantage. Since this imbalance is uniform by design for all players, a more robust

model is to assume that the ability of one side to win increases or decreases according to the map being

played on. In this model, we let ΘL,j represent the Allies team’s ability to win a match played on map j

given the set of players L (using L for Allies and X for Axis). As with player ratings, we choose a model
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that places map-side ratings symmetrically around 0:

ΘL,j ≡
∑

i∈L

θi + γj with θi ∼ N(0, σ2
θ) and γj ∼ N(0, σ2

γ). (2)

This is similar to fitting the “homefield advantage parameter” proposed by Agresti (1988), giving one γj

parameter per “field” for the Allies. When γj is positive, map j favors the Allies, when negative, the Axis.

Although this does not model individual player-map-side interactions, it is assumed that the additive effect

will be stronger than the individual interaction effects because most maps have been designed to be uniformly

uneven. We are more interested in increasing the predictive power of the ratings than in the interactions

themselves, and therefore we chose not to model them at this point. Since we have modeled the “map-side”

advantage with respect to the Allies team, we will often also refer to it as the “Allies bias”.

With this model, a team’s ability on a current map becomes the sum of the player abilities
∑

i∈L or X θi,

offset by a map-side effect, γL or X,j . This information is interesting because it suggests that a team of

skilled players can still enjoy a reasonable level of challenge against a team of less-skilled players as long as

the map-side effect gives the less skilled team an equivalent advantage. In addition, the estimates for γj can

be used to judge which maps are more balanced between Axis and Allies. Server administrators can use this

information to choose which maps to place on their servers to improve gameplay, and map creators can use

this information to better balance the gameplay in their maps.

3.3 Server Difficulty

If players can be ranked based on matches they participated in on a given server, it would be beneficial to

also be able to compare players participating on different servers, or players that played on several servers.

In order to determine how a given server affects a player’s rating, the following model adds a server bias,

ψk, into each player’s rating, yielding:

θi,j ≡ θi + ψk with θi ∼ N(0, σ2
θ) and ψk ∼ N(0, σ2

ψ). (3)

Note that the server difficulty is modeled as an increase instead of a decrease in a player’s rating. This means

that we are really modeling server “easiness.” We did this for simplicity in the model. It means that lower

and not higher values of ψk denote a more difficult server. With this model, a player’s rating depends on

their base ability and the server they are playing on. Besides being able to compare players across servers
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more effectively, estimating ψk also gives us a measure of how difficult each server is. This information can

be used by newer players to choose easier servers, or more experienced players can use it to find challenging

gameplay. In addition, since the player ratings can now be fit globally over all servers, a player can compare

his or herself to all of the players in the game, instead of only those who play on a certain server. The

accuracy of the comparison, however, will be affected by how often players move between servers. If enough

server “cross-over” occurs, then the ratings should be reasonable enough for comparison.

Another interesting aspect of ψ is since the amount added to each side s is equal to |L or X |ψk, ψk can

be interpreted as the rating increase the side expects for each additional player on that side. Servers where

having additional players will not make up for the skill of the players are more difficult than those where a

few extra players alone can decide the winner. This fact can be used to represent the ability of, for example,

the Allies team to win as follows:

ΘL,j,k =
∑

i∈L

θi + γj + (|L| − |X |)ψk with θi ∼ N(0, σ2
θ), γj ∼ N(0, σ2

γ), and , ψk ∼ N(0, σ2
ψ). (4)

If the ability of the Allies team is expressed this way, the Axis team’s ability can be expressed without loss

of generality as the sum of the player skills on the Axis team:

ΘX =
∑

i∈X

θi with θi ∼ N(0, σ2
θ). (5)

This is because the Allies ability already accounts for both the map-side effect γj and the server effect ψk.

3.4 Likelihood

The likelihood we use is based on a modified version of the Bradley-Terry paired-comparison model (Bradley

and Terry, 1952). Without loss of generality, we choose a likelihood that predicts whether or not the Allies

team will win. The Allies’s probability of winning a match played on map j for server k is chosen to be

proportional to λL,j,k = exp(ΘL) using equation 4. Since map and server effects are accounted for in the

Allies bias, the Axis’ probability of winning is chosen to be proportional to λX = exp(ΘX). Therefore the

probability of the Allies winning on map j and server k is λL,j,k/(λL,j,k+λX). Using equations 4 and 5, this

results in the probability of a given side winning increasing exponentially with the size of that side compared

to the other. This is appealing because unlike a game like chess where only one move can be made per side

despite the number of actual players making the move decisions, in Enemy Territory and other real-time
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online team competitions, every player can act simultaneously. Having more players gives a team with more

numbers the ability to more effectively defend or accomplish its objectives. It is rare for a team with two or

less players than another to win unless that team is very good.

If G is the total number of matches, Lg and Xg represents the Allies and Axis teams in match g respec-

tively, w is 1 for an Allies win and −1 for an Axis win, j the map played on, and k the server played on,

this model gives rise to the following likelihood function:

P (w|λ) =

G
∏

g=1

λLg,j,k(λLg,j,k + λXg
)−1 (6)

where

λL,j,k = exp(wΘL,j,k), (7)

and

λX = exp(wΘX) (8)

using ΘL,j,k and ΘX as given in equations 4 and 5.

One problem with the above likelihood is that in public-style servers players can come, leave, and change

teams almost at will. Therefore, a model that does not take into account how much time a player spends

on each team is inaccurate. Since the match data we are using does indicate the amount of time the players

spent per team, this information can be used to modify equations 4 and 5 as follows:

ΘL,j,k =
∑

i∈L

τi,Lθi + γj + (
∑

i∈L

τi,l −
∑

i∈X

τi,X)ψk with θi ∼ N(0, σ2
θ), γj ∼ N(0, σ2

γ), (9)

and , ψk ∼ N(0, σ2
ψ) (10)

ΘX =
∑

i∈X

τi,Xθi with θi ∼ N(0, σ2
θ) (11)

where τi,L (τi,X) is the percent of the total match time player i spent on the Allies (Axis) team, L (X). This

yields a simple approximation to integrating the player abilities over the time of the match to estimate the

overall strengths λ per team. Notice that the server effect ψk is now weighted by the “effective” number of

players on each team throughout the match, instead of the difference in all players that participated in the

map.
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4 MCMC Analysis strategies

This section will discuss how the priors were chosen, how the model was fit, and how the convergence of the

fit was verified, all using MCMC.

4.1 Prior selection

Since the prior means for the parameters are all chosen to be 0 without loss of generality, the remaining

priors to choose are on the variances of the player ratings, σ2
θ , the map-side ratings σ2

γ , and the server ratings

σ2
ψ . Instead of choosing non-informative priors for these variances, we placed hyperprior distributions on

them using inverse gamma distributions, with α and β chosen such that the distributions have means of 1.0

and variances at 1/3. This was done simply to keep most player ratings between -3 and 3. Again, we chose

priors this way because there are no current standards for rating players in these types of competitions,

and so we decided for simplicity to assume they follow close to a standard normal distribution. We used

hyperpriors so we could observe the relative differences in the standard deviations.

4.2 Software

Software to fit the model used in this paper was written in Python specifically for these analyses. It uses

MCMC with Gibbs steps to sample from the standard deviations and Metropolis steps to sample from the

player rating θs, the map-side effect or Allies-bias γs, and the server difficulty ψs. This leaves a potentially

large set of tuning parameters, but following the suggestion of Graves et al. (2003), we chose separate

constants for both player- and map-step sizes and divided them by the square root of the number of games

a player had played in, or the number of times that map had been played. This resulted in acceptance rates

of around 40% for the parameters fit using Metropolis steps.

4.3 Convergence Diagnostics

While it is difficult to guarantee an assessment of the mixing and convergence for MCMC, time series plots

and acceptance rate analyses were used and the criteria in the diagnostics proposed by Raftery and Lewis

(1996) were met. In addition, section 4.4 discusses the accuracy results of predicting with the estimated

parameters.
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4.4 Measuring Performance

One way to measure the performance of the given model is by its accuracy in predicting the matches used

to estimate the model parameters. Unfortunately this positively biases the results. An unbiased estimate

of the model’s accuracy would require computationally intensive out-of-sample methods such as leave-one-

out cross-validation. These methods would be impossible for real-time applications of the ratings because

the amount of time it takes to fit the model using MCMC is longer than the length of the average match.

Therefore, out-of-sample results will not be given using MCMC to fit the model, but instead are given in

section 5 which provides a more efficient method to both fit and evaluate the given model. That said, the

mean accuracy across the MCMC samples achieved near 78% accuracy in predicting the match data. This

suggests that the ratings derived for the players are reasonably accurate over the given matches given the

fact that “the smallest achievable prediction error could be as big as 50%” (Herbrich et al., 2007) in this

type of problem.

4.5 Results

In this section we derive rankings for players based on information from 4,675 matches on three different

Enemy Territory servers. Combining the servers allows us to rank the players globally, and allows us to

compare the difficulty of the three servers using ψ. In addition, the difficulty of the maps with respect to

which side a player chooses are analyzed.

4.5.1 Player and Server Ratings

To determine which were the best players over all three servers, we took advantage of the fact that many

players play on more than a single server to fit the server difficulty parameter, ψ, across all three servers

simultaneously. The model parameters were estimated using 100,000 iterations of MCMC with 10,000

iterations of burn-in. The results are shown in tables 1 and 2. Player names have been removed since they

are not likely to be recognizable to the general public. The players are conservatively ranked by how they

play two standard deviations below their posterior means. This has the desired effect of penalizing players

whose ratings are less certain. The results meet the goals of giving each player a rating and hence a stronger

incentive to continue playing and improving his or her abilities in the game. Although the names have been

removed, the resulting rankings are reasonable given player opinions among those who play on the servers.

It is interesting to compare the actual winning percentage with the posterior means and rankings. For

example, the 6th-and 8th-ranked players have higher winning percentages than any others in the top 10. In
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theory, this suggests that although these player win more often, the matches these players win and lose are

easier on average than the matches won and lost by the other players in the top 10. This is actually a benefit

of the rating system, it allows us to adjust winning percentage ranking to account for match difficulty in

terms of the other players, the map and side being played on, and the difficulty of the server.

The last column in the server table gives the percentage of times a smaller team wins against a larger

team on that server. This is relevant recalling that the server difficulty parameter can be interpreted of as

being inversely proportional to how often smaller teams win against larger teams. The server results are

surprising at first because most players consider the settings on the third-ranked server to make it a more

difficult server. However, the fact that the matches on this server are generally smaller because it is the

least popular of the servers may contribute to it being easier overall for those players who play on multiple

servers. Also, the ratings agree here with the actual win percentages observed when smaller teams play

against larger teams. It is not as surprising to see the top-ranked server above the second-ranked server

since the top-ranked server is the most popular server and attracts many of the best players. However,

both of the top two servers have a similar configuration, and therefore it is reasonable that their respective

difficulties are relatively close. Here we see an example where players could use this information to choose a

server. The better players could choose to play on the first two servers to enjoy more of a challenge, whereas

newer players may be likely to choose the third server because it is easier. In addition, server administrators

can use this information to change settings on their servers to increase or decrease the difficulty. The effects

of the individual server settings and rules themselves can also be modeled to suggest ways to adjust them.

It is also worth noting that the shape of the resulting marginal posterior distributions for players, servers,

and maps were all nearly indistinguishable from a normal distribution with the same mean and variance.

An example of this can be seen in figure 1 which shows the posterior distribution for the first server along

with a normal distribution with the same mean and variance.

4.5.2 Map-Side Effects or Allies Bias

One of the interesting effects of the model used is that rating parameters are also fit for each map-side

combination. This information can be used to judge which maps are more even and which maps have

the least balance between Axis and Allies. Table 3 shows the results of fitting the map-side or Allies-bias

parameters across the three servers for two of the maps players competed on. In general, the results are in

line with the perception of the players. The first map is well known for being biased towards the Allies. Even

without accounting for player skill and server difficulty, the Allies still win 72% of the time. The second map

14



Table 1: Top 10 Ratings and rankings of players along with their posterior means, variances, and win
percentages.

Rank Post. Mean SD Actual Win %

1 1.71 0.32 0.76
2 1.63 0.31 0.72
3 1.55 0.29 0.68
4 1.63 0.35 0.72
5 1.49 0.33 0.72
6 1.57 0.38 0.90
7 1.65 0.44 0.69
8 1.66 0.46 0.91
9 1.99 0.63 0.60

10 1.39 0.33 0.74

Table 2: This table shows the servers ranked by difficulty, giving the most difficult first. Shown for each
server is the posterior mean and the standard deviation. Recall that smaller not larger values denote more
difficult servers. Also shown is the percentage of times a smaller teams defeats a larger team on the server.

Rank Post. Mean SD Win% Smaller Team

1 1.44 0.10 0.22
2 1.63 0.14 0.22
3 2.45 0.30 0.14

is actually symmetrical in its construction, and therefore it is not surprising that it is more fair. The slight

bias towards the Allies team despite the map being symmetrical is because the color of the Allies uniforms

blends in well with the background of the map, whereas the Axis uniforms stand out more. This makes the

Allies harder targets, and therefore biases the map towards the Allies despite its design.

From these findings, it is not unreasonable to conclude that, for example, the first map is imbalanced

in favor of the Allies and that the second map is probably a fair map. Server administrators could decide

to either not include maps like the first one in the list of maps on their server, or they can take measures

to ensure that when this map is played, the Axis team consists of more skilled players. Map makers can

use this information to consider whether they should make changes to the first map that would make it

more even given equally skilled teams. As for the second map, the slight bias towards Allies despite the

symmetrical construction of the map forces map designers to think deeper about what can affect gameplay.

Other symmetrical maps have changed background color schemes that favor one uniform color over another

in order to correct the imbalance. Games with statistically driven level design are more likely to attract

players, as are servers that include more balanced maps in their lineups.
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Figure 1: First server’s posterior compared to a normal distribution with the same mean and variance. The
server’s distribution is shown in black and the normal in red.

Table 3: Allies bias examples.

Name Post. Mean SD Actual Allies Win %

map1 1.99 0.24 0.72
map2 0.28 0.22 0.55
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5 Real-Time Analysis strategies

5.1 Prior Selection

To simplify the proposed approximation method method, we set the priors on the variances of the player,

map-side, and server difficulties to 1.0. Again, this results in ratings between -3 and 3, and we felt this

reasonable since there are no established standards for computer game ratings. We did this before observing

the hyperprior variances obtained using MCMC, which turned out to have means near 1.0, and therefore we

do not expect differences between the estimation methods to result from choice of prior.

5.2 Software

The software used to fit the model using the following approximation was also written in Python specifically

for these analyses.

5.3 Efficiently Estimating the Parameters

The method we use to efficiently approximate the marginal posterior of the given model parameters extends

the method used in Glickman (1999) to handle three new elements:

1. Estimating the ratings of individuals competing in groups instead of just one-on-one competitions

between individuals.

2. Dealing with the fact that players come, go, and change teams commonly throughout a given compe-

tition.

3. Additional non-player parameters, including a “map-side” bias and a “server difficulty” bias.

The method in Glickman (1999) can be used to update the marginal posterior ratings of the participating

players, the Allies bias for the given map, and the server difficulty after each competition. The goal is to

take a given prior mean, θi,(t−1) (initialized to 0) and prior variance σi,(t−1) (initialized to 1) where i refers

to a given player’s rating, a given map’s Allies-bias, or a given server’s difficulty at time t − 1 before a

competition, and update both to obtain the marginal posterior mean θi,t and variance σi,t at a time t after

a given competition. Notice that like Glickman, we are not estimating the entire covariance matrix, but

only keeping the diagonal elements. This is for mostly to save on both time and space computationally, but

we felt it reasonable because the number of times two given players participate in the same match is small
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compared to the overall large population of players. Extending the update equations in Glickman (1999) to

account for teams, maps, and servers yields:

σi,t = (σ−1
i,t−1 + gi/∈x(x

TDx)2P (w)(1 − P (w))x2
i )

−1 (12)

θi,t = θi,t−1 + σi,tgi/∈x(x
TDx)(1 − P (w)) ∗ w (13)

(14)

where

P (w) =
1

1 + exp(−wgi/∈x(xTDx)(ΘL − ΘX))
(15)

(16)

and

g(σ2) = (
√

1 + 3σ2/π2)−1. (17)

Recalling from section 3.4 that w = 1 for an Allies win, and −1 for an Axis win, P (w) represents the

probability of the given outcome. The form of P (w) is equivalent to that given in 6 except that it also

includes g(σ2) which will be explained shortly. x is a column vector with an entry for each parameter

participating in the match that took place at time t. For a given player i, a corresponding element in x, xi,

will be set to τi,L − τi,X , or the net time the player spent on the Allies team. There will also be an element

set to 1 in x for the Allies bias γj for the given map, and finally an element set to
∑

i∈L τi,L −
∑

i∈X τi,X ,

or the net advantage in player numbers on the Allies team. This element corresponds to ψk for the given

server. D represents the diagonalized covariance matrix including only the parameters participating in the

given match. The quantity g(σ2) is used to match the first and second moments of the cumulative logistic

distribution to that of the cumulative normal or probit distribution in order to approximate a closed form

solution to the marginal integral. Notice also that g is subscripted with i 6= x, this is because, as in Glickman

(1999), when updating the marginal posterior of a given parameter i, that parameter’s own variance is not

included and therefore the x and D within g(σ2)s will not include the mean or variance for parameter i. See

Glickman (1999) for the full derivation of the estimation procedure.
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5.4 Results

In this section we first discuss the complexity of the approximation method compared to MCMC in section

5.4.1. We then derive rankings for players based on match information on three different Enemy Territory

servers in section 5.4.2. The map-side effects are analyzed in section 5.4.3 and section 5.4.4 reports on the

accuracy of the approximation method.

5.4.1 Complexity Comparison

The main reason for choosing the method in section 5.3 instead of the MCMC is that MCMC takes longer

to fit the data than the length of the average match in Enemy Territory, which is 15 minutes. Here we give

a brief overview of the complexity of both MCMC and the approximation method instead of an in-depth

analysis because the difference is so pronounced.

The complexity of MCMC for this application is proportional to NPM where N is the number of

iterations chosen for the chains, P is the number of players who play over all the matches, and M is the

average number of matches per player. The data set used consisted of 4,675 matches, 5,145 players, and 14

matches on average per player. Fitting this data using 100,000 iterations of MCMC took several days on a

2.7 Ghz Core 2 Quad Extreme. This is longer than the average length of a match in Enemy Territory. The

length of time it takes to fit the model using MCMC is too long to be used in a real-time application.

The complexity of the approximation method we give in section 5.3 is proportional to the number of

players in a given match—in Enemy Territory this never exceeds 64—therefore the update time is at worst a

small constant and takes less than 1 second to process on the same Core 2 Quad Extreme machine. Since the

complexity of this method scales only linearly with the size of the number of competitors, it can be extended

for use in applications that are significantly larger than this one without a major increase in running time.

This method can be applied real-time because it can update the model before the next match completes.

The comparison may not seem completely fair because we are comparing the update from a single match to

fitting the entire data set as is done in MCMC. However, using MCMC would require refitting on the entire

data set after every match. That said, the amount of time it takes to fit the larger data set used in this

paper with the more efficient method is under one minute on the same 2.7 Ghz machine. This is compared

to the aforementioned several days using MCMC. Therefore, this method is significantly faster than MCMC

and is fast enough to be used in real-time.
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Table 4: Ratings, rankings, and comparisons to MCMC for the approximate estimation method.

Rank MCMC Rank Post. Mean MCMC Post. Mean SD MCMC SD Actual Winning %

1 1 1.66 1.71 0.32 0.32 0.76
2 8 1.92 1.66 0.45 0.46 0.74
3 14 2.33 2.00 0.68 0.67 0.91
4 3 1.48 1.55 0.31 0.29 0.68
5 11 1.39 1.39 0.33 0.33 0.74
6 7 1.50 1.57 0.40 0.38 0.69
7 4 1.36 1.63 0.34 0.35 0.72
8 30 1.24 1.06 0.29 0.29 0.62
9 9 1.49 1.65 0.45 0.44 0.60

10 2 1.26 1.63 0.31 0.31 0.72

5.4.2 Player Rankings

In this section we present the top ten rankings of the players for each server as fit by the method given in

5.3. The model was fit using the same 4,675 matches from each of the three servers as used in the MCMC

estimation. The approximation method given in the previous section was used to update the participating

parameters after each match. By participating parameters we mean those corresponding to the players,

map-sides, and server for that match. The results are shown in table 4 with the ranks, means, and standard

deviations estimated by MCMC shown side-by-side for comparison. The players are again conservatively

ranked by how they play two standard deviations below their posterior means. Once again, it is not uncom-

mon in these tables to see players who have worse winning percentages ranked higher than those with better

ones. This suggests that their wins were against more difficult odds—e.g. harder map-side combinations,

better players, etc.

It appears that the estimation method performed well with respect to MCMC, especially in approximating

the variance. The means show the most difference and lead to some permutations in the ranking, but they

are within the expected ranges given by the parameters’ variances. The differences could have been caused by

the normal–logistic approximation or by the fact the covariance matrix was diagonalized. Overall, however,

the estimation method is reasonable given the results.

Table 5 gives results of estimating the server difficulty with the approximation method, along with

comparisons to MCMC. The ranking is the same, however the approximation method appears to have

overestimated the means. The variances are, as with the players, close to their MCMC estimates. The

advantage of using the approximation method, however, is that these server estimates can be updated after

each match occurring on each server. Therefore, players can have instant up-to-date information about the
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Table 5: This table shows the servers ranked by difficulty, giving the most difficult first. Also shown for
each server is the posterior mean, the standard deviation, side-by-side MCMC results, and the percentage
of times a smaller team wins on that server.

Rank Post. Mean MCMC Post. Mean SD MCMC SD Smaller Team Win %

1 1.96 1.44 0.09 0.10 0.22
2 2.14 1.63 0.14 0.14 0.22
3 2.74 2.45 0.27 0.30 0.14

Table 6: Approximated Allies bias compared to MCMC estimates.

Name Post. Mean MCMC Post. Mean SD MCMC SD Actual Allies Win %

map1 1.93 1.99 0.25 0.24 0.72
map2 0.59 0.28 0.24 0.22 0.55

difficulty of the servers they are choosing from. The method we use to estimate these parameters is efficient

enough to keep up with millions of players and thousands of servers, and therefore it can be applied to any

one of the popular games that are already out or scheduled for release in the near future.

5.4.3 Map-Side Effects or Allies Bias

This section compares the results of approximating the Allies bias parameter γ to the estimates given by

MCMC for the same maps. Table 6 shows the results and comparisons with MCMC. The approximations

for the first map are close in both mean and variance, whereas the second in variance. The mean of the

second map is just over twice the MCMC estimate, but still reasonably near 0 given the map is symmetrical in

design. Again, the advantage here is these approximations are close enough to be used in making judgements

about the maps, and available in near real-time after each match. Because the method we use to estimate the

map ratings is efficient enough to run real-time, server administrators can use the map rating information

to judge the fairness of a current match in progress, and make changes to improve balance. More on this is

discussed in section 6.

5.4.4 Measuring Performance

Here we attempt to obtain a less-biased measure of the performance of the model whereas in section 4.4

the accuracy given is biased. Like section 4.4, the model’s accuracy is tested against predicting the matches

used to estimate the model parameters. In order to remain unbiased, the prediction measurement for a given

match is taken before updating the model based on that match. This is not completely unbiased, and in
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fact results in a slight negative bias because the model parameters used for prediction will not have been

approximated well for the first group of matches. However this also represents how the model is updated

and used in the real-world. The results show the accuracy to be 72.5%. Given the complexity of these

diverse online matches, an unbiased, first-pass accuracy of over 70% is significant. Especially considering

the aforementioned fact that the smallest error may be as large as 50% on a given match. In addition, 70%

is comparable to the results obtained by Herbrich et al. (2007) on an application with less complexity than

the one used here.

Another, more ad hoc performance measure is to simply verify that the values of the parameters and

resulting rankings follow the intuitive sense of those familiar with the servers, maps, and players. Acting as

those who have experience with these maps, servers, and players, we agree that, in general, the rankings fit.

6 Applications

This section describes potential applications for the suggested model and parameter estimation method.

6.1 Ranking the Players

Our first application is the obvious one, using the ratings to rank the players on the servers and across the

servers. Players tend to prefer servers that give them a ranking they can work to improve. As stated, MCMC

is too computationally intensive to be used real-time in situations involving as little as thousands of players

on only three servers, let alone millions of players and matches. This is because the amount of time it takes

MCMC to fit the data is usually longer than the length of a single match.

The approximation method we used, however, is efficient enough to provide real-time rankings and ratings

to players across multiple servers. These ratings and rankings can be updated quickly after every match,

and made available to the players for comparisons. For example, for the servers that we run, players can go

to web pages to see listings of their ratings and rankings and compare them to other players on the servers.

In addition, we provide methods for players to view their ratings and rankings with in-game commands. The

players tend to appreciate these features. For example, one of our servers provides these commands and is

almost consistently full at 25-32 players, whereas another server where we do not is almost always empty.

Having the ability to query a player’s rating information in-game is probably not the only factor contributing

to the other server’s lower popularity, but it is worth noting.

Because we model server difficulty as well as player and map-side ratings, players can compare themselves
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across servers. This assumes there are enough players that play on more than one server to make comparisons

meaningful. For example, if none of the players who play on the third server ever play on any other server,

their ratings and their server’s difficulty rating can not be correctly compared to other players and servers.

Since the writing of this paper, a system that posts world-wide rankings to players who play Enemy

Territory has been added to the game and made publicly available Joshua E. Menke (2007). To date, over

200 server administrators have enabled this feature in their game, resulting in player ratings based on several

hundred thousand players and matches. It also includes Allies bias ratings on several hundred different maps.

The running accuracy of this global system in predicting the winner of a new match is currently at 74%.

Player ratings are periodically removed for inactivity, so the current player count posted only represents

active players, and not the total. The number of matches is, however, accurate (currently 354,967).

6.2 Choosing Servers

Since we fit a server “difficulty” parameter with ψ per server, we can use that parameter to rank the servers

in order of difficulty. The parameter estimation method we used is efficient enough to update ψ for a large

amount of servers in real-time after each match. Games that have this information available real-time can

make it available to players who are trying to choose which servers to play on. Newer players can choose the

easier servers, and veterans can choose servers that will give them more of a challenge. Also, because player

ratings are fit taking into account the difficulty of the servers they play on, the servers can be also be listed

in order of the average player ratings of the players currently playing. This measure gives an even better

estimate of the current state of the server because it represents skill of the players in the current match,

instead of the average difficulty. Players can sort the servers by the average rating of the players on them,

and then choose servers with ratings to suit the desired challenge level. As a more advanced option, games

can be designed to automatically choose servers that best fit a given player. This can ensure that players

always have a positive experience in playing these complex team-based games.

Besides a more consistent and balanced gameplay experience, giving players the ability to choose servers

based on difficulty gives them another incentive to continue playing. Players will start on easier servers

with the goal of improving their skills to a point they can comfortably play on harder servers. This natural

improvement path will encourage players to return again and again to a game to see if they are good enough

to play on harder and harder servers. One of the most popular online game types is the MMORPG or

Massively Multiplayer Online Role-Playing games. The most popular of these games, World of Warcraft,

boasts a player base of more than 8 million (Woodcock, 2006). The draw to the MMORPG is that the
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game is designed with explicit character development paths that give players incentives to continue playing.

However, these paths can be very time-consuming to pursue, especially for the more casual gamers that play

in games like Enemy Territory. The server rating system can supply a character development path for the

casual gamer based solely on the ratings system. This can enlarge the audience for first-person shooters and

encourage players to buy games with this feature, and continue playing them.

6.3 Balancing Teams

At the server level, administrators can use real-time player rating information to balance the teams currently

playing. To make this easier, the game can use the approximated marginal posterior ratings of the players

to give posterior prediction estimates on which team is likely to win. If a team is very unlikely to win the

match based on this real-time information, administrators can move better players to the disadvantaged

team, and / or move worse players to the favored team. This can also be done automatically. If a team

falls below a specified probability of winning, say 30%, then the game can automatically move players to

bring the probability as close to 50% as possible. A computer can easily try all possible moves involving one

player and in such a way greedily optimize the probabilities around 50%. Servers that employ automatic

team balancing will enjoy a consistently balanced level of gameplay and attract more players. Games that

have this option available may be more popular than those that do not.

In addition to making the game more enjoyable for its players, balancing teams in this manner can improve

the efficiency of rating the players. As Herbrich et al. (2007) observed, “the [team balancing] process can

be viewed as a process of sequential experimental design” (Fedorov, 1972). This is appealing and “since the

quality of a match is determined by the unpredictability of its outcome, the goals of [balancing teams] and

finding the most informative matches are aligned!” (Herbrich et al., 2007). If the data used to fit the model

comes from matches where a form of team balancing has been employed, less data may be needed to achieve

a more accurate fit of the model.

One important question when choosing a limit for automatic team balancing is whether or not the

predictions are precise around that threshold. It is important that teams with, for example, a 70% chance

of winning actually do win 70% of the time. We can report that, in our experiments, we found that when

the prediction for a team winning was above 70%, that team did in fact win 70% of the time. Therefore,

70% seems to be a good value as a cut-off if more than a 70% winning chance is considered unfair.
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7 Conclusion and Future Work

We have presented a new model for estimating individual ratings in team competitions. These ratings allow

players to effectively track their ability to help the teams they play on win. Games and servers that provide

well-developed methods for tracking their players’ abilities are more likely to attract players and therefore

be more profitable. The model presented is also able to account for both the dynamic nature of the teams in

public, online team-competitions, and the imbalance commonly associated with the levels or maps designed

for these competitions. In addition, we have estimated parameters that allow us to analyze the fairness of

the maps in terms of the sides playing. This information can be use to create maps that are more fair and

therefore more enjoyable for the players, or the information can be used by server administrators to choose

different maps for their respective servers.

We have also fit a parameter that allows us to estimate the difficulty of each of a set of servers. This

information can be used to allow players to select servers that better match their abilities. Players are more

likely to continue playing a game if they can ensure matches will not be too easy or too difficult. The model

developed in this paper can be directly applied to modern-day online team-competitions with results that

will likely improve gameplay and attract players.

In addition, we have presented an efficient method for estimating the parameters of this model so that

they can be used to provide real-time information about individual player rankings, server difficulty, and the

fairness of the current match on a given server. MCMC is not efficient enough to do this real-time. We have

given applications that can use this information, including suggesting games allow players to choose which

servers to play on based on server difficulty or the average rating of the players currently playing on a given

server. We have also suggested that the information be used to automatically balance current matches by

moving players between teams. Games and servers that provide well-developed methods for both tracking

their players’ abilities and ensuring balanced gameplay are more likely to attract players and therefore be

more profitable.

Future work will first evaluate the model that the estimation method is used to fit. For instance, instead

of assuming player ratings are stationary, we could model time-varying changes in player abilities. Glickman

(2001) suggested a model to do this for rating and ranking chess players.

It would also be interesting to model the effect of the number of players on how hard a given map-side

combination is. There may be maps that are easier for a given side when there are fewer players, but

become harder as the total number of players increases. In this model, γj would be the result of a regression

fit instead of a single, learned constant. Being able to analyze the effects of the number of players on a
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maps fairness will allow server administrators to choose maps more appropriate for the number of players

commonly on their servers, again leading to increases in server usage.

In addition to improving the model, the estimation method could also be improved. One way to do this

would be to retain the entire covariance matrix, especially if the number of parameters is not prohibitively

large. This may narrow the differences between the estimates of the means given by both approximation

method and MCMC. To save time computationally, only those parts of the covariance matrix related to the

given match would be used in an update. For applications where the number of parameters is too large,

modeling assumptions could be made that only tracked covariances between pre-determined parameters.

This would be chosen based on prior knowledge of the application.

Finally, we will investigate non-parametric approaches to modeling player ratings and match-making.

One simple approach can be seen by viewing it as a method for fitting a simple artificial neural network

(ANN) as shown in Menke and Martinez (2007). This ANN model can be extended to multiple layers, thus

yielding a generalized non-parametric and non-linear model. In order to preserve individual ratings, the

non-linear portion of the ANN can be incorporated independently from the original. This non-parametric

model may detect and predict arbitrary higher-level interactions and non-linear dependencies not accounted

for by the given model.
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